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Abstract. A variational formalism for the calculation of the binding energies of hydrogenic donors in
a parabolic diluted magnetic semiconductor quantum dot is discussed. Results are obtained for Cd1−xin

MnxinTe/Cd1−xoutMnxoutTe structures as a function of the dot radius in the presence of external magnetic
and electric fields applied along the growth axis. The donor binding energies are computed for different
field strengths and for different dot radii. While the variation of impurity binding energy with dot radii
and electric field are as expected, the polarizability values enhance in a magnetic field. However, for certain
values of dot radii and in intense magnetic fields the polarizability variation is anomalous. This variation of
polarizability is different from non- magnetic quantum well structures. Spin polaronic shifts are estimated
using a mean field theory. The results show that the spin polaronic shift increases with magnetic field and
decreases as the electric field and dot radius increase.

PACS. 75.50.Pp Magnetic semiconductors – 73.21.La Quantum dots – 78.67.Hc Quantum dots

1 Introduction

The fabrication of many quantum-well structures with di-
mensions comparable to the de Broglie wavelength is pos-
sible especially after the invention of experimental tech-
niques such as molecular beam epitaxy, chemical vapour
deposition and electron lithography. The interest in the
quantum size effects present in the low dimensional struc-
tures is that they exhibit some physical properties such
as optical and electronic transport characteristics which
are entirely different from those of the bulk semiconduc-
tor constituents [1]. Since the electronic confinement is
increased while reducing the dimensionality one can ex-
pect these characters more pronounced. The fabrication
of semiconductor heterostructures with quantum confine-
ment in all the three directions is expected to exhibit some
exotic electronic behaviour.

Self-assembled quantum dots (QDs) formed in highly
strained semiconductor heterostructures are a subject of
considerable interest [2]. In particular, the magnetocon-
ductance fluctuations observed in ballistic quantum dots
have been the subject of intensive research in the past few
years [3,4]. QDs patterned on top of two dimensional elec-
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tron gases are now commonly used as an experimental tool
for the investigation of a particular regime of quantum
transport where the electron dynamics is both ballistic
and coherent [5]. The magnetic field was usually applied
perpendicular to the quantum well so as to get the max-
imum magnetic flux enclosed by the electron trajectories.
But it has been shown that the presence of the component
of the field parallel to the quantum well can strongly affect
some phenomena such as magneto conductance fluctua-
tions [6]. In the presence of magnetic field the confined hy-
drogenic impurities located at any position inside a semi-
conductor crystal have drawn considerable attention in the
past few years [7,8]. Vivas-Moreno et al. [9] have calcu-
lated the binding energy of a shallow donor on-centre im-
purity located in cylindrical shaped GaAs-(GaAlAs) low
dimensional systems, considering an infinite potential in
all surfaces of the structures with the intensity of magnetic
field applied in an axial direction. Recently the study of
magnetic field on the ground state energy and binding en-
ergy of a hydrogen impurity within a spherical QD were
studied by Maduene et al. [10]. The experimental and the-
oretical works on the effects of electric and magnetic fields
in GaAs/Ga1−xAlxAs quantum wells have also been the
subject of interest in past [11,12]. In particular, electric
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and magnetic field effects on confined donor impurities
in GaAs/Ga1−xAlxAs quantum wells have been reported
by Yoo et al. [13]. The influence of the different sizes on
the energy levels, in the presence of magnetic and electric
effects was analyzed by Ben Salem et al. [14].

In this work, we present a variational calculation of
binding energies of the donor impurities in Cd1−xMnxTe
quantum dots in the presence of parallel magnetic and
electric fields applied along the growth direction. We work
within the effective mass approximation and adopt a vari-
ational envelope wave function for the donor electron. A
systematic study with variation of magnetic and electric
fields as well as dot radii has been attempted for the finite
barrier confinement of a parabolic quantum dot. We also
investigate theoretically the donor bound spin polaron in
a quantum dot. The mean field theory with modified Bril-
louin function that is already used for bulk and quantum
well cases has been extended to the case of a QD and
we estimate the spin polaronic shifts to the impurity ion-
ization energies. Moreover, the introduction of magnetic
ions such as Mn into these compounds leads to the for-
mation of diluted magnetic semiconductors, in which the
exchange interaction between the magnetic ions and elec-
tronic states opens perspectives for interesting new phe-
nomena. One such possibility is observing a situation in
which the exchange-interaction-enhanced spin splitting of
a Landau level coinciding with the energy separation be-
tween adjacent Landau levels (cyclotron energy), where
interaction of the two resonances might be expected. In
Section 2, we present the theoretical framework of the
problem while the results and discussion are provided in
Section 3. To our knowledge, this is the first calculation
on a hydrogenic impurity in a parabolic diluted magnetic
semiconductor quantum dot in the presence of both mag-
netic and electric fields.

2 Model and calculations

2.1 Ionization energy

We consider a parabolic QD (depth VD, and radius
R) of the magnetically non-uniform “spin-doping”
superlattice system such as Cd1−xoutMnxoutTe/
Cd1−xinMnxinTe/Cd1−xoutMnxoutTe. Such a QD may be
fabricated by the method of evolution of self-assembled
quantum dots (QDs) in the Stransky-Krastanow mode as
in the case of Cd1−XMnXSe QDs or by electron beam
lithography and wet chemical etching which is used to
fabricate quantum wires [15].

In the effective mass approximation, the Hamiltonian
of an electron in a parabolic QD in the presence of a mag-
netic field B along the z direction with the superposition
of electric field F , may be written as

HD =
1

2m∗

(
�p− e �A

c

)2

+ |e|Fz + VD +Hzee +Hm (1)

where VD = V0(B)r2/R2 for |r| ≤ R while VD = V0(B)
for |r| > R, and V0(B) is the barrier height of the

Table 1. Variation of critical field with composition.

Critical magnetic field in Tesla
Composition Expt. values for Extrapolated values for

x acceptors donors

0.07 2.0@ 20
0.24 28.5# 285

0.3 90.0$ 900
@Reference [28]; #reference [19]; $reference [29].

parabolic dot, which is taken to be 70% of the differ-
ence in the band gap between Cd1−XoutMnXoutTe and
Cd1−XinMnXinTe. The barrier height decreases as the
magnetic field increases as a result of variation of band
offsets. In equation (1), Hzee and Hm refer to the interac-
tion of electron spin with the applied field (Zeeman effect)
and the interaction between electron spin and Mn2+ ions
respectively (see Sect. 2.2).

The variation of conduction band offset with mag-
netic field is obtained by extrapolating the model used
for the case of valence band offset variation, which in-
corporates the experimentally available critical magnetic
fields at which a type I to type II transition occurs [16].
Assuming the other characteristics are same, the experi-
mentally observed critical magnetic fields at which a type
I to type II transition occurs, has been multiplied by a
weight factor 10, because barrier height is normally taken
to be 30% of the band gap differences between the layers
of the heterostructure for acceptors and 70% for donors
and the exchange parameters for holes and electrons are
880 meV and 220 meV respectively [17].

The variation of the band gap differences with mag-
netic field is given by [16](

∆EB
g

∆E0
g

)
=
ηe−ςγ − 1
η − 1

(2)

where ∆EB
g and ∆E0

g are the band gap differences with
and without magnetic field respectively. η = eςγ0 is chosen
with ς as a parameter and γ0 as the critical field. In our
calculation ς is taken to be 0.5. We define γ = �ωc/2Ry∗
where Ry∗ is the effective Rydberg (11.024 meV) and ωc

is the cyclotron frequency. The band gap of the material
is given by [18] Eg(Cd1−xMnxTe) = 1606+1587x (meV).
The variation of barrier height with magnetic field is given
in Figure 1. The critical magnetic field depends upon the
composition of Mn. Experimentally observed critical mag-
netic fields for three different compositions [19] and the
extrapolated critical magnetic field for the case of donors
are given in Table 1. The critical fields (in Tesla) for other
values of composition can be obtained using

Bc = Aenx, (3)

where A = 0.734 and n = 19.082 which gives the best fit
to the extrapolated experimentally observed critical mag-
netic fields for x = 0.07, 0.24 and 0.3. It should be noted
that the barrier height depends on spin polarity and is
opposite for spin-up and spin-down states.
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Fig. 1. Calculated barrier height for various magnetic fields
for a composition x = 0.1.

The ground state energy of an electron in a parabolic
quantum dot with magnetic and electric fields is estimated
by variational method. We have assumed the trial func-
tions as

ψ
(0)
in (r) = Aine

−ξr2
(1 + νFr cos θ) r < R

ψ
(0)
out(r) = −Aout

e−δr

r
(1 + νFr cos θ) r ≥ R. (4)

Here Ain and Aout are normalization constants. By match-
ing the wave functions and their derivatives at the bound-
aries of the QD, and along with the normalization, we fix
the values of Ain , Aout , and ξ = 1/R (1/R+ δ). We take
δ and ν as the variational parameters. By introducing the
effective Rydberg Ry∗ = m∗e4/2�

2ε2 as the unit of en-
ergy and the effective Bohr radius a∗ = �

2ε/m∗e2(60 Å)
as the length unit, the Hamiltonian given in equation (1)
becomes

HD = −∇2+
γ2

4
r2 sin2 θ+γLz+

|e|a∗Fr cos θ
Ry∗

+
VD

Ry∗
(5)

where VD is the parabolic confinement. In equation (5), we
have dropped Hzee and Hm terms of equation (1), as we
wish to handle them separately. In the absence of the elec-
tric field, equation (1) may also be written as, for motion
along the z-direction,

H
′
D = E0 +

(
n+

1
2

)
�ωc + µBg(z)SzB +

P 2
z

2m
(6)

where the effective g-factor is a function of the coordinate
z and E0 is the band edge energy. The effective potential
for the motion in z-direction is step-like and its amplitude
is determined only by the variation of the g-factor [20],

U = gµBszB = xJsz 〈Sz〉 . (7)

Let us consider the Hzee term. For an electron spin,
the separation between the Zeeman levels is given by
�ω = �γgB0 where γg is the gyromagnetic ratio. For
B0 ∼ 40 Tesla, we obtain a value of ∼5 meV for the sep-
aration. As this is small when compared to the exchange

energy, we drop the Zeeman effect. The ground state en-
ergy of the conduction electron in a parabolic QD in the
external magnetic and electric fields, ED, is obtained by
minimizing the expectation value of HD with respect to
the variational parameter δ, which minimizes HD in the
absence of electric field for various magnetic fields, and ν
for various electric fields using equation (4).

The Hamiltonian for a donor situated at the center of
the parabolic dot in the presence of external magnetic and
electric fields applied along the growth direction is

HID = HD − 2
r
. (8)

The ionization energy of the donor in the presence of
magnetic and electric fields, Eion(B,F ) = ED + γ −
〈ψ|HID |ψ〉min, is obtained by variational method using
the following trial wave functions with β as the variational
parameter:

ψin(r) = ψ
(0)
in e

−βr r < R

ψout(r) = ψ
(0)
oute

−βr r ≥ R. (9)

2.2 Spin polaronic effect

The exchange interaction arising between the spin of a
conduction electron and the Mn2+ spins is described by
the Hamiltonian Hm as

Hm = −
∑

J(r, Rj)s.Sj . (10)

Here Sj is the spin of the Mn2+ ion at position Rj and s
is the spin of the conduction electron centered at r. The
exchange interaction J(r, Rj) is dependent on the overlap
between the orbital of the conduction electron and of the
3d electrons.

Kasuya and Yanase [21], who explained the transport
properties of magnetic semiconductors, originally devel-
oped the theory of spin polaron (SP). This mean field
theory, which invokes the exchange interaction between
the carrier and magnetic impurity in the presence of an
external magnetic field B, yields the spin polaronic shift,
Esp, with the modified Brillouin function [17]

Esp =
1
2
αN0

∫
xS0(x) |ψ|2Bs

[
Sα |ψ|2

2kB[T + T0(x)]

+
gµBSB

kB[T + T0(x)]

]
dτ (11)

where α is the exchange coupling parameter, S is the
Mn2+ spin, and xNo is the Mn ion concentration. The
integration is on spatial coordinates. Also g ≈ 2, and
B is the strength of the external magnetic field. So(x),
the effective spin, and To(x), the effective temperature
are the semi-phenomenological parameters, which describe
the paramagnetic response of the Mn2+ ions in the bulk
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Cd1−xMnxTe [17]. In equation (9), ψ is the envelope func-
tion as given in equation (7) with the appropriate values of
the variational parameters, kB is the Boltzmann constant
and Bs(η) is the modified Brillouin function.

The parameters used in our calculations are N0 =
2.94 × 1022 cm−3, αN0 ≈ 220 meV, and the
semi-phenomenological parameters So(Xin = 0.02) =
1.97, So(Xout = 0.1) = 1.08, To(Xin = 0.02) = 0.94,
and To(Xout = 0.1) = 3.8422. Using the envelop function
given in equation (7) with the appropriate variational pa-
rameters, we obtain

Esp =
1
2
αN0[XinS0(Xin)I1 +XoutS0(Xout)I2] (12)

where

I1 =
∫

|ψin|2Bs(η1)dτ, I2 =
∫

|ψiout|2Bs(η2)dτ,

and

Bs(ηj) =
2S + 1

2S
coth

(
2S + 1

2S
ηj

)
− 1

2S
coth

( ηj

2S

)
,

(13)

with

η1 =
Sα |ψin|2

2kB[T + T0(xin)]
+

gµBSB

kB[T + T0(xin)]

and

η2 =
Sα |ψout|2

2kB[T + T0(xout)]
+

gµBSB

kB [T + T0(xout)]
.

3 Results and discussion

The estimated variation of barrier height with magnetic
field by our extrapolated model for the case of donors
in the diluted magnetic semiconductor Cd1−XMnXTe is
given in Figure 1. The barrier height becomes zero for a
critical field ∼50 Tesla which corresponds to γ = 2.7. The
experimental critical magnetic fields are for the acceptor
problem [16,22].

In Figures 2, 3 we have displayed the variation of the
binding energy of the electron corresponding to the low-
est level in the Dot for different magnetic and electric field
strengths as a function of dot radius. We observe the fol-
lowing: The lowest binding energy (i) decreases as dot ra-
dius increases and approaches the bulk value for large dot
sizes; (ii) decreases as the magnetic field increases up to a
dot size ∼3a∗; the trend reverses beyond this dot size. The
crossings are the consequences of the variation of the bar-
rier height due to magnetic field, which is the character-
istic of DMS QDs; and (iii) does not show much variation
with electric field up to a dot size ∼3a∗, unlike in the case
of a quantum well [23]. Beyond ∼3a∗, the variation with

Fig. 2. Variation of lowest binding energy with dot radius for
various magnetic and electric fields.

Fig. 3. Variation of the lowest binding energy with dot radius
for various electric fields in the presence of a magnetic field.

electric field is as in the case of QW, as it is expected. In
general, in all quantum well structures without magnetic
elements (e.g. GaAs/GaAlAs systems) the magnetic field
increases the binding energy [24]. In the present work, this
situation is reversed which we believe is due to the reduc-
tion in barrier height in a magnetic field and the interplay
between field induced localization and confinement due to
V0. This situation is clearly brought out in Figure 4 where
the lowest binding energy remains almost constant with
the combined effects of both fields. The binding energy is
higher for smaller dot radii due to the confinement, and
the magnetic field effects are prominent for small size dots.

Donor ionization energy as a function of dot radius
with different electric fields for a given magnetic field is
shown in Figure 5. Donor ionization energy decreases in
an electric field. The decrease is more for wider dots. As
the electric field is increased the electron is pulled toward
one side of the quantum dot as a result the binding ener-
gies decrease as a function of electric field for an on-center
impurity. To bring about an appreciable change in the
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Fig. 4. Variation of the lowest binding energy with electric
field for different dot radii. The upper set of lines indicates for
the dot radius, 1a∗ and the lower set of lines indicates for the
dot radius, 5a∗.

Fig. 5. Variation of ionization energy with dot radius for dif-
ferent electric fields in the presence of magnetic field. The inset
shows the same without magnetic field.

donor ionization energy one has to apply a field of strength
in excess of 1 × 106 V/m. It is also seen that for a given
magnetic field, the ionization energy is reduced in an elec-
tric field.

The donor ionization energy as a function of dot ra-
dius, with different magnetic fields and a given electric
field, is shown in Figure 6. As expected, the donor ion-
ization energy decreases with an increase of dot radius,
reaching the bulk value for large dot radii (see the inst
in Fig. 6). Also we observe an increase in the donor ion-
ization energy in a magnetic field. As the dot radius ap-
proaches zero the confinement becomes negligibly small,
and in the finite barrier problem the tunneling becomes
huge. The donor ionization energy again approaches the
bulk value. Hence the variation of donor ionization energy
with dot radius shows a peak around 1a∗ for all the mag-

Fig. 6. Variation of ionization energy with dot radius for dif-
ferent magnetic fields in the presence of electric field. The inset
shows the same without electric field.

Fig. 7. Variation of ground state energy with the square of
electric field strengths for the case of dot radius 55 Å.

netic fields. This is a well known result in all quantum well
structures [16]. Figure 6 also shows that the peak shifts to
higher values of dot radius as the magnetic field increases
indicating strong tunneling against localization.

In an attempt to estimate the donor polarizability
we have plotted the ground state energy of the donor
versus F 2 in Figure 7 for different magnetic fields. The
slopes, namely∂ 〈H〉min/∂F

2, for different magnetic fields
give−αpol/2. The variation of polarizability with magnetic
field is presented in Figure 8. The polarizabilities are esti-
mated for three different dot radii, R = 55 Å, 100 Å, and
200 Å. The donor polarizability shows a peak around 10 T
for a dot of radius less than a∗. Since the polarizability is
derived from the energy, αpol shows a peak as the energy
does in Figures 5, 6. However, for R � a∗, αpol does not
show appreciable variation with magnetic field. The case
of R = 100 Å is interesting as the polarizability remains
negative up to about 10 T and then increases. Such an
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Fig. 8. Variation of polariazability with magnetic field.

Fig. 9. Variation of spin polaronic shift with magnetic and
electric fields for different dot radii.

anomalous behaviour is known for a quantum well system
in an excited state [25]. This, we believe is a manifestation
of non-linear effects in intense magnetic fields [26].

The increase of spin polaronic shift with magnetic field
is clearly brought out in Figure 9. This figure also shows
that for a narrow dot the polaronic effects are important
as compared to a dot of large radius. For narrow dots the
spin polaronic shift increases with electric field.

In this work, we have considered the effects
of both electric and magnetic fields in the es-
timation of ionization energies of the donor in
Cd1−xinMnxinTe/Cd1−xoutMnxoutTe quantum dots. We
have used the effective mass approximation within a vari-
ational procedure and for the first time, the cumulative
effects of electric and magnetic fields applied along the
growth direction of the system are discussed. We don’t
have at present sufficient experimental data to compare
our results. However, the problem of a harmonic oscilla-
tor under a confined geometry has drawn the attention
of several physicists like Landau, Fock and Darwin [27].
Since at present quantum dots are drawing more attention
in areas like spintronics and quantum computers we hope
that the present work will stimulate more experimental ac-

tivity on impurity states on quantum dots. Experimental
efforts are encouraged to lend support to our calculations.

References

1. N. Porras-Montenegro, S.T. Perez-Merchancano, Phys.
Rev. B 24, 4714 (1981)

2. Shu-Shen Li, Kai Chang, Jian-Bai Xia, Phys. Rev. B 71,
155301 (2005)

3. R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, P.T.
Coleridge, C. Dettmann, N. Zhu, H. Guo, A. Delage, P.J.
Kelly, Z. Wasilewski, Phys. Rev. Lett. 78, 1952 (1997)

4. D.K. Ferry, R. Akis, J.P. Bird, Phys. Rev. Lett. 93, 026803
(2004)

5. C. Gustin, S. Faniel, B. Hackens, S. Melinite, M.
Shayengan, V. Bayot, Phys. Rev. B 71, 155314 (2005)

6. B.I. Halperin, A. Stern, Y. Oreg, J.N.H.J. Cremers, J.A.
Folk, C.M. Marcus, Phy. Rev. Lett. 86, 2106 (2001)

7. J.L. Zhu, J.J. Xiong, B.L. Gu, Phys. Rev. B 41, 6001
(1990)

8. Z. Xiao, J. Zhu, F.He, J. Appl. Phys. 79, 9181 (1996)
9. J.J. Vivas-Moreno, N. Porras-Montenegro, Phys. Stat. Sol.

(b) 210, 723 (1998)
10. Corella-Maduene, R. Rosas, J.L. Martin, R. Reira, J. Appl.

Phys. 90, 5 (2001)
11. X. Liu, A. Petrou, D.D. McCombe, J. Ralston, G.Wicks,

Phys. Rev. B 38, 8522 (1988)
12. N.C. Jarosik, B.D. McCombe, B.V. Shanabrook, J. Comas,

J. Ralston, G. Wicks, Phys. Rev. Lett. 54, 1283 (1985)
13. B. Yoo, McCombe, W. Schaff, Phys. Rev. B 44, 13152

(1991)
14. E. Ben Salem, S. Jaziri, R. Bennaceur, Phys. Stat. Sol. (b)

224, 397 (2001)
15. Takahashi, K. Takabayashi, I. Souma, J. Shen, Y. Oka, J.

Appl. Phys. 87, 6469 (2000)
16. S.G. Jayam, K. Navaneethakrishnan, Int. J. Mod. Phys. B

16, 3737 (2002)
17. J.A. Gaj, R. Planel, G. Fishman, Solid State Commun.

29, 435 (1979)
18. F. Long, P. Harrison, W.E. Hagston, J. Appl. Phys. 79,

6939 (1996)
19. H. Yokoi, S. W. Tozer, Y. Kim, D. Rickel, Y. Kakudate,

S. Usuba, S. Fujiwara, S. Takeyama, G. Karczewski, T.
Wojtowicz, J. Kossut, J. Appl. Phys. 85, 5935 (1999)

20. M. Von Ortenberg, in Applications of High magnetic
field in Semiconductor Physics, edited by G. Landwehr
(Springer, 1983), p. 451

21. T. Kasuya, A. Yanase, Rev. Mod. Phys. 40, 684 (1968)
22. K. Gnanasekar, K. Navaneethakrishnan, Mod. Phys. Lett.

B 18, 419 (2004)
23. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Phys. Rev.

B 28, 3241 (1983)
24. Zhigang Xiao, J. Appl. Phys. 86, 4509 (1999)
25. D. Nguyen, T. Odagaki, Am. J. Phys. 55, 466 (1987)
26. J. Frohlich, E.H. Lieb, M. Loss, Commun. Math. Phys.

104, 251 (1986)
27. T. Chakraborthy, Quantum dots (North Holland,

Amsterdam, 1999)
28. E. Deleporte, J. M. Berroir, G. Bastard, C. Delalande, J.

M. Hong, L.L. Chang, Phys. Rev. B 42, 5891 (1990)
29. S. Kuroda, K. Kojima, K. Takita, K. Uchida, N. Miura, J.

Cry. Growth 159, 967 (1996)


